graph.pyx 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. import logging
  2. import rdflib
  3. from lakesuperior import env
  4. from libc.string cimport memcpy
  5. from libc.stdlib cimport free
  6. from cymem.cymem cimport Pool
  7. cimport lakesuperior.cy_include.collections as cc
  8. cimport lakesuperior.model.structures.callbacks as cb
  9. cimport lakesuperior.model.structures.keyset as kset
  10. from lakesuperior.model.base cimport Key, TripleKey
  11. from lakesuperior.model.graph cimport term
  12. from lakesuperior.model.graph.triple cimport BufferTriple
  13. from lakesuperior.model.structures.hash cimport term_hash_seed32
  14. from lakesuperior.model.structures.keyset cimport Keyset
  15. logger = logging.getLogger(__name__)
  16. cdef class Graph:
  17. """
  18. Fast and simple implementation of a graph.
  19. Most functions should mimic RDFLib's graph with less overhead. It uses
  20. the same funny but functional slicing notation.
  21. A Graph contains a :py:class:`lakesuperior.model.structures.keyset.Keyset`
  22. at its core and is bound to a
  23. :py:class:`~lakesuperior.store.ldp_rs.lmdb_triplestore.LmdbTriplestore`.
  24. This makes lookups and boolean operations very efficient because all these
  25. operations are performed on an array of integers.
  26. In order to retrieve RDF values from a ``Graph``, the underlying store
  27. must be looked up. This can be done in a different transaction than the
  28. one used to create or otherwise manipulate the graph.
  29. Every time a term is looked up or added to even a temporary graph, that
  30. term is added to the store and creates a key. This is because in the
  31. majority of cases that term is bound to be stored permanently anyway, and
  32. it's more efficient to hash it and allocate it immediately. A cleanup
  33. function to remove all orphaned terms (not in any triple or context index)
  34. can be later devised to compact the database.
  35. An instance of this class can also be converted to a ``rdflib.Graph``
  36. instance.
  37. """
  38. def __cinit__(
  39. self, store, size_t ct=0, str uri=None, set data=set()
  40. ):
  41. """
  42. Initialize the graph, optionally from Python/RDFlib data.
  43. :type store: lakesuperior.store.ldp_rs.lmdb_triplestore.LmdbTriplestore
  44. :param store: Triplestore where keys are mapped to terms. By default
  45. this is the default application store
  46. (``env.app_globals.rdf_store``).
  47. :param size_t ct: Initial number of allocated triples.
  48. :param str uri: If specified, the graph becomes a named graph and can
  49. utilize the :py:meth:`value()` method and special slicing notation.
  50. :param set data: If specified, ``ct`` is ignored and an initial key
  51. set is created from a set of 3-tuples of :py:class:``rdflib.Term``
  52. instances.
  53. """
  54. self.pool = Pool()
  55. if not store:
  56. store = env.app_globals.rdf_store
  57. # Initialize empty data set.
  58. if data:
  59. # Populate with provided Python set.
  60. self.keys = Keyset(len(data))
  61. self.add_triples(data)
  62. else:
  63. self.keys = Keyset(ct)
  64. ## PROPERTIES ##
  65. @property
  66. def uri(self):
  67. """
  68. Get resource identifier as a RDFLib URIRef.
  69. :rtype: rdflib.URIRef.
  70. """
  71. return rdflib.URIRef(self.id)
  72. @property
  73. def data(self):
  74. """
  75. Triple data as a Python/RDFlib set.
  76. :rtype: set
  77. """
  78. cdef TripleKey spok
  79. ret = set()
  80. self.seek()
  81. while self.keys.get_next(&spok):
  82. ret.keys.add((
  83. self.store.from_key(spok[0]),
  84. self.store.from_key(spok[1]),
  85. self.store.from_key(spok[2])
  86. ))
  87. return ret
  88. ## MAGIC METHODS ##
  89. def __len__(self):
  90. """ Number of triples in the graph. """
  91. return self.keys.size()
  92. def __eq__(self, other):
  93. """ Equality operator between ``Graph`` instances. """
  94. return len(self & other) == 0
  95. def __repr__(self):
  96. """
  97. String representation of the graph.
  98. This includes the subject URI, number of triples contained and the
  99. memory address of the instance.
  100. """
  101. id_repr = f' id={self.id},' if self.id else ''
  102. return (
  103. f'<{self.__class__.__name__} @0x{id(self):02x}{id_repr} '
  104. f'length={len(self)}>'
  105. )
  106. def __str__(self):
  107. """ String dump of the graph triples. """
  108. return str(self.data)
  109. def __add__(self, other):
  110. """ Alias for set-theoretical union. """
  111. return self.__or__(other)
  112. def __iadd__(self, other):
  113. """ Alias for in-place set-theoretical union. """
  114. return self.__ior__(other)
  115. def __sub__(self, other):
  116. """ Set-theoretical subtraction. """
  117. cdef Graph gr3 = self.empty_copy()
  118. gr3.keys = kset.subtract(self.keys, other.keys)
  119. return gr3
  120. def __isub__(self, other):
  121. """ In-place set-theoretical subtraction. """
  122. self.keys = kset.subtract(self.keys, other.keys)
  123. return self
  124. def __and__(self, other):
  125. """ Set-theoretical intersection. """
  126. cdef Graph gr3 = self.empty_copy()
  127. gr3.keys = kset.intersect(self.keys, other.keys)
  128. return gr3
  129. def __iand__(self, other):
  130. """ In-place set-theoretical intersection. """
  131. self.keys = kset.intersect(self.keys, other.keys)
  132. return self
  133. def __or__(self, other):
  134. """ Set-theoretical union. """
  135. cdef Graph gr3 = self.copy()
  136. gr3.keys = kset.merge(self.keys, other.keys)
  137. return gr3
  138. def __ior__(self, other):
  139. """ In-place set-theoretical union. """
  140. self.keys = kset.merge(self.keys, other.keys)
  141. return self
  142. def __xor__(self, other):
  143. """ Set-theoretical exclusive disjunction (XOR). """
  144. cdef Graph gr3 = self.empty_copy()
  145. gr3.keys = kset.xor(self.keys, other.keys)
  146. return gr3
  147. def __ixor__(self, other):
  148. """ In-place set-theoretical exclusive disjunction (XOR). """
  149. self.keys = kset.xor(self.keys, other.keys)
  150. return self
  151. def __contains__(self, trp):
  152. """
  153. Whether the graph contains a triple.
  154. :rtype: boolean
  155. """
  156. cdef TripleKey spok
  157. spok = [
  158. self.store.to_key(trp[0]),
  159. self.store.to_key(trp[1]),
  160. self.store.to_key(trp[2]),
  161. ]
  162. return self.keys.contains(&spok)
  163. def __iter__(self):
  164. """ Graph iterator. It iterates over the set triples. """
  165. yield from self.data
  166. # Slicing.
  167. def __getitem__(self, item):
  168. """
  169. Slicing function.
  170. It behaves similarly to `RDFLib graph slicing
  171. <https://rdflib.readthedocs.io/en/stable/utilities.html#slicing-graphs>`__
  172. """
  173. if isinstance(item, slice):
  174. s, p, o = item.start, item.stop, item.step
  175. return self._slice(s, p, o)
  176. elif self.id and isinstance(item, rdflib.Node):
  177. # If a Node is given, return all values for that predicate.
  178. return self._slice(self.uri, item, None)
  179. else:
  180. raise TypeError(f'Wrong slice format: {item}.')
  181. def __hash__(self):
  182. """ TODO Bogus """
  183. return self.id
  184. ## BASIC PYTHON-ACCESSIBLE SET OPERATIONS ##
  185. def value(self, p, strict=False):
  186. """
  187. Get an individual value.
  188. :param rdflib.termNode p: Predicate to search for.
  189. :param bool strict: If set to ``True`` the method raises an error if
  190. more than one value is found. If ``False`` (the default) only
  191. the first found result is returned.
  192. :rtype: rdflib.term.Node
  193. """
  194. if not self.id:
  195. raise ValueError('Cannot use `value` on a non-named graph.')
  196. # TODO use slice.
  197. values = {trp[2] for trp in self.lookup((self.uri, p, None))}
  198. if strict and len(values) > 1:
  199. raise RuntimeError('More than one value found for {}, {}.'.format(
  200. self.id, p))
  201. for ret in values:
  202. return ret
  203. return None
  204. def terms_by_type(self, type):
  205. """
  206. Get all terms of a type: subject, predicate or object.
  207. :param str type: One of ``s``, ``p`` or ``o``.
  208. """
  209. i = 'spo'.index(type)
  210. return {r[i] for r in self.data}
  211. def add_triples(self, triples):
  212. """
  213. Add triples to the graph.
  214. This method checks for duplicates.
  215. :param iterable triples: iterable of 3-tuple triples.
  216. """
  217. cdef TripleKey spok
  218. for s, p, o in triples:
  219. spok = [
  220. self.store.to_key(s),
  221. self.store.to_key(p),
  222. self.store.to_key(o),
  223. ]
  224. self.keys.add(&spok, True)
  225. def remove(self, pattern):
  226. """
  227. Remove triples by pattern.
  228. The pattern used is similar to :py:meth:`LmdbTripleStore.delete`.
  229. """
  230. self._match_ptn_callback(
  231. pattern, self, del_trp_callback, NULL
  232. )
  233. ## CYTHON-ACCESSIBLE BASIC METHODS ##
  234. cdef Graph copy(self, str uri=None):
  235. """
  236. Create copy of the graph with a different (or no) URI.
  237. :param str uri: URI of the new graph. This should be different from
  238. the original.
  239. """
  240. cdef Graph new_gr = Graph(self.store, self.ct, uri=uri)
  241. new_gr.keys = self.keys.copy()
  242. cdef Graph empty_copy(self, str uri=None):
  243. """
  244. Create an empty copy with same capacity and store binding.
  245. :param str uri: URI of the new graph. This should be different from
  246. the original.
  247. """
  248. return Graph(self.store, self.ct, uri=uri)
  249. cpdef void set(self, tuple trp) except *:
  250. """
  251. Set a single value for subject and predicate.
  252. Remove all triples matching ``s`` and ``p`` before adding ``s p o``.
  253. """
  254. if None in trp:
  255. raise ValueError(f'Invalid triple: {trp}')
  256. self.remove((trp[0], trp[1], None))
  257. self.add((trp,))
  258. def as_rdflib(self):
  259. """
  260. Return the data set as an RDFLib Graph.
  261. :rtype: rdflib.Graph
  262. """
  263. gr = Graph(identifier=self.id)
  264. for trp in self.data:
  265. gr.add(trp)
  266. return gr
  267. def _slice(self, s, p, o):
  268. """
  269. Return terms filtered by other terms.
  270. This behaves like the rdflib.Graph slicing policy.
  271. """
  272. # If no terms are unbound, check for containment.
  273. if s is not None and p is not None and o is not None: # s p o
  274. return (s, p, o) in self
  275. # If some terms are unbound, do a lookup.
  276. res = self.lookup((s, p, o))
  277. if s is not None:
  278. if p is not None: # s p ?
  279. return {r[2] for r in res}
  280. if o is not None: # s ? o
  281. return {r[1] for r in res}
  282. # s ? ?
  283. return {(r[1], r[2]) for r in res}
  284. if p is not None:
  285. if o is not None: # ? p o
  286. return {r[0] for r in res}
  287. # ? p ?
  288. return {(r[0], r[2]) for r in res}
  289. if o is not None: # ? ? o
  290. return {(r[0], r[1]) for r in res}
  291. # ? ? ?
  292. return res
  293. def lookup(self, pattern):
  294. """
  295. Look up triples by a pattern.
  296. This function converts RDFLib terms into the serialized format stored
  297. in the graph's internal structure and compares them bytewise.
  298. Any and all of the lookup terms msy be ``None``.
  299. :rtype: Graph
  300. "return: New Graph instance with matching triples.
  301. """
  302. cdef:
  303. Graph res_gr = self.empty_copy()
  304. self._match_ptn_callback(pattern, res_gr, add_trp_callback, NULL)
  305. res_gr.data.resize()
  306. return res_gr
  307. cdef void _match_ptn_callback(
  308. self, pattern, Graph gr,
  309. lookup_callback_fn_t callback_fn, void* ctx=NULL
  310. ) except *:
  311. """
  312. Execute an arbitrary function on a list of triples matching a pattern.
  313. The arbitrary function is appied to each triple found in the current
  314. graph, and to a discrete graph that can be the current graph itself
  315. or a different one.
  316. """
  317. cdef:
  318. kset.key_cmp_fn_t cmp_fn
  319. Key k1, k2, sk, pk, ok
  320. TripleKey spok
  321. s, p, o = pattern
  322. # Decide comparison logic outside the loop.
  323. if s is not None and p is not None and o is not None:
  324. # Shortcut for 3-term match.
  325. spok = [
  326. self.store.to_key(s),
  327. self.store.to_key(p),
  328. self.store.to_key(o),
  329. ]
  330. if self.keys.contains(&spok):
  331. callback_fn(gr, &spok, ctx)
  332. return
  333. if s is not None:
  334. k1 = self.store.to_key(s)
  335. if p is not None:
  336. cmp_fn = cb.lookup_skpk_cmp_fn
  337. k2 = self.store.to_key(p)
  338. elif o is not None:
  339. cmp_fn = cb.lookup_skok_cmp_fn
  340. k2 = self.store.to_key(o)
  341. else:
  342. cmp_fn = cb.lookup_sk_cmp_fn
  343. elif p is not None:
  344. k1 = self.store.to_key(p)
  345. if o is not None:
  346. cmp_fn = cb.lookup_pkok_cmp_fn
  347. k2 = self.store.to_key(o)
  348. else:
  349. cmp_fn = cb.lookup_pk_cmp_fn
  350. elif o is not None:
  351. cmp_fn = cb.lookup_ok_cmp_fn
  352. k1 = self.store.to_key(o)
  353. else:
  354. cmp_fn = cb.lookup_none_cmp_fn
  355. # Iterate over serialized triples.
  356. while self.keys.get_next(&spok):
  357. if cmp_fn(&spok, k1, k2):
  358. callback_fn(gr, &spok, ctx)
  359. ## LOOKUP CALLBACK FUNCTIONS
  360. cdef inline void add_trp_callback(
  361. Graph gr, const TripleKey* spok_p, void* ctx
  362. ):
  363. """
  364. Add a triple to a graph as a result of a lookup callback.
  365. """
  366. gr.keys.add(spok_p)
  367. cdef inline void del_trp_callback(
  368. Graph gr, const TripleKey* spok_p, void* ctx
  369. ):
  370. """
  371. Remove a triple from a graph as a result of a lookup callback.
  372. """
  373. #logger.info('removing triple: {} {} {}'.format(
  374. # buffer_dump(trp.s), buffer_dump(trp.p), buffer_dump(trp.o)
  375. #))
  376. gr.keys.remove(spok_p)