123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915 |
- import logging
- from functools import wraps
- from rdflib import Graph, URIRef
- from rdflib.term import Node
- from lakesuperior import env
- from libc.string cimport memcpy
- from libc.stdlib cimport free
- from cymem.cymem cimport Pool
- from lakesuperior.cy_include cimport collections as cc
- from lakesuperior.model.base cimport Buffer, buffer_dump
- from lakesuperior.model.graph cimport callbacks as cb
- from lakesuperior.model.graph cimport term
- from lakesuperior.model.graph.triple cimport BufferTriple
- from lakesuperior.model.structures.hash cimport term_hash_seed32
- logger = logging.getLogger(__name__)
- cdef class SimpleGraph:
- """
- Fast and simple implementation of a graph.
- Most functions should mimic RDFLib's graph with less overhead. It uses
- the same funny but functional slicing notation.
- A SimpleGraph can be instantiated from a store lookup or obtained from a
- :py:class:`lakesuperior.store.keyset.Keyset`. This makes it possible to use
- a Keyset to perform initial filtering via identity by key, then the
- filtered Keyset can be converted into a set of meaningful terms.
- An instance of this class can also be converted to and from a
- ``rdflib.Graph`` instance.
- """
- def __cinit__(self, set data=set(), *args, **kwargs):
- """
- Initialize the graph, optionally with Python data.
- :param set data: Initial data as a set of 3-tuples of RDFLib terms.
- """
- cdef:
- cc.HashSetConf terms_conf, trp_conf
- self.term_cmp_fn = cb.term_cmp_fn
- self.trp_cmp_fn = cb.trp_cmp_fn
- cc.hashset_conf_init(&terms_conf)
- terms_conf.load_factor = 0.85
- terms_conf.hash = cb.term_hash_fn
- terms_conf.hash_seed = term_hash_seed32
- terms_conf.key_compare = self.term_cmp_fn
- terms_conf.key_length = sizeof(Buffer*)
- cc.hashset_conf_init(&trp_conf)
- trp_conf.load_factor = 0.75
- trp_conf.hash = cb.trp_hash_fn
- trp_conf.hash_seed = term_hash_seed32
- trp_conf.key_compare = self.trp_cmp_fn
- trp_conf.key_length = sizeof(BufferTriple)
- cc.hashset_new_conf(&terms_conf, &self._terms)
- cc.hashset_new_conf(&trp_conf, &self._triples)
- self.pool = Pool()
- # Initialize empty data set.
- if data:
- # Populate with provided Python set.
- self.add(data)
- def __dealloc__(self):
- """
- Free the triple pointers.
- """
- free(self._triples)
- free(self._terms)
- ## PROPERTIES ##
- @property
- def data(self):
- """
- Triple data as a Python generator.
- :rtype: generator
- """
- cdef:
- void *void_p
- cc.HashSetIter ti
- Buffer* ss
- Buffer* sp
- Buffer* so
- cc.hashset_iter_init(&ti, self._triples)
- while cc.hashset_iter_next(&ti, &void_p) != cc.CC_ITER_END:
- #logger.info(f'Data loop.')
- if void_p == NULL:
- #logger.warn('Triple is NULL!')
- break
- trp = <BufferTriple *>void_p
- #print(f'trp.s: {buffer_dump(trp.s)}')
- #print(f'trp.p: {buffer_dump(trp.p)}')
- #print(f'trp.o: {buffer_dump(trp.o)}')
- yield (
- term.deserialize_to_rdflib(trp.s),
- term.deserialize_to_rdflib(trp.p),
- term.deserialize_to_rdflib(trp.o),
- )
- @property
- def stored_terms(self):
- """
- All terms in the graph with their memory address.
- For debugging purposes.
- """
- cdef:
- cc.HashSetIter it
- void *cur
- terms = set()
- cc.hashset_iter_init(&it, self._terms)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- s_term = <Buffer*>cur
- terms.add((f'0x{<size_t>cur:02x}', term.deserialize_to_rdflib(s_term)))
- return terms
- ## MAGIC METHODS ##
- def __len__(self):
- """ Number of triples in the graph. """
- return cc.hashset_size(self._triples)
- def __eq__(self, other):
- """ Equality operator between ``SimpleGraph`` instances. """
- return len(self ^ other) == 0
- def __repr__(self):
- """
- String representation of the graph.
- It provides the number of triples in the graph and memory address of
- the instance.
- """
- return (
- f'<{self.__class__.__name__} @{hex(id(self))} '
- f'length={len(self)}>'
- )
- def __str__(self):
- """ String dump of the graph triples. """
- return str(self.data)
- def __add__(self, other):
- """ Alias for set-theoretical union. """
- return self.union_(other)
- def __iadd__(self, other):
- """ Alias for in-place set-theoretical union. """
- self.ip_union(other)
- return self
- def __sub__(self, other):
- """ Set-theoretical subtraction. """
- return self.subtraction(other)
- def __isub__(self, other):
- """ In-place set-theoretical subtraction. """
- self.ip_subtraction(other)
- return self
- def __and__(self, other):
- """ Set-theoretical intersection. """
- return self.intersection(other)
- def __iand__(self, other):
- """ In-place set-theoretical intersection. """
- self.ip_intersection(other)
- return self
- def __or__(self, other):
- """ Set-theoretical union. """
- return self.union_(other)
- def __ior__(self, other):
- """ In-place set-theoretical union. """
- self.ip_union(other)
- return self
- def __xor__(self, other):
- """ Set-theoretical exclusive disjunction (XOR). """
- return self.xor(other)
- def __ixor__(self, other):
- """ In-place set-theoretical exclusive disjunction (XOR). """
- self.ip_xor(other)
- return self
- def __contains__(self, trp):
- """
- Whether the graph contains a triple.
- :rtype: boolean
- """
- cdef:
- Buffer ss, sp, so
- BufferTriple btrp
- btrp.s = &ss
- btrp.p = &sp
- btrp.o = &so
- s, p, o = trp
- term.serialize_from_rdflib(s, &ss)
- term.serialize_from_rdflib(p, &sp)
- term.serialize_from_rdflib(o, &so)
- return self.trp_contains(&btrp)
- def __iter__(self):
- """ Graph iterator. It iterates over the set triples. """
- yield from self.data
- #def __next__(self):
- # """ Graph iterator. It iterates over the set triples. """
- # return self.data.__next__()
- # Slicing.
- def __getitem__(self, item):
- """
- Slicing function.
- It behaves similarly to `RDFLib graph slicing
- <https://rdflib.readthedocs.io/en/stable/utilities.html#slicing-graphs>`__
- """
- if isinstance(item, slice):
- s, p, o = item.start, item.stop, item.step
- return self._slice(s, p, o)
- else:
- raise TypeError(f'Wrong slice format: {item}.')
- def __hash__(self):
- return 23465
- ## BASIC PYTHON-ACCESSIBLE SET OPERATIONS ##
- def terms_by_type(self, type):
- """
- Get all terms of a type: subject, predicate or object.
- :param str type: One of ``s``, ``p`` or ``o``.
- """
- i = 'spo'.index(type)
- return {r[i] for r in self.data}
- def add(self, trp):
- """
- Add triples to the graph.
- :param iterable triples: iterable of 3-tuple triples.
- """
- cdef size_t cur = 0, trp_cur = 0
- trp_ct = len(trp)
- term_buf = <Buffer*>self.pool.alloc(3 * trp_ct, sizeof(Buffer))
- trp_buf = <BufferTriple*>self.pool.alloc(trp_ct, sizeof(BufferTriple))
- for s, p, o in trp:
- term.serialize_from_rdflib(s, term_buf + cur, self.pool)
- term.serialize_from_rdflib(p, term_buf + cur + 1, self.pool)
- term.serialize_from_rdflib(o, term_buf + cur + 2, self.pool)
- (trp_buf + trp_cur).s = term_buf + cur
- (trp_buf + trp_cur).p = term_buf + cur + 1
- (trp_buf + trp_cur).o = term_buf + cur + 2
- self.add_triple(trp_buf + trp_cur)
- trp_cur += 1
- cur += 3
- def len_terms(self):
- """ Number of terms in the graph. """
- return cc.hashset_size(self._terms)
- def remove(self, pattern):
- """
- Remove triples by pattern.
- The pattern used is similar to :py:meth:`LmdbTripleStore.delete`.
- """
- self._match_ptn_callback(
- pattern, self, cb.del_trp_callback, NULL
- )
- ## CYTHON-ACCESSIBLE BASIC METHODS ##
- cdef SimpleGraph empty_copy(self):
- """
- Create an empty copy carrying over some key properties.
- Override in subclasses to accommodate for different init properties.
- """
- return self.__class__()
- cpdef union_(self, SimpleGraph other):
- """
- Perform set union resulting in a new SimpleGraph instance.
- TODO Allow union of multiple graphs at a time.
- :param SimpleGraph other: The other graph to merge.
- :rtype: SimpleGraph
- :return: A new SimpleGraph instance.
- """
- cdef:
- void *cur
- cc.HashSetIter it
- BufferTriple *trp
- new_gr = self.empty_copy()
- for gr in (self, other):
- cc.hashset_iter_init(&it, gr._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- new_gr.add_triple(bt, True)
- return new_gr
- cdef void ip_union(self, SimpleGraph other) except *:
- """
- Perform an in-place set union that adds triples to this instance
- TODO Allow union of multiple graphs at a time.
- :param SimpleGraph other: The other graph to merge.
- :rtype: void
- """
- cdef:
- void *cur
- cc.HashSetIter it
- cc.hashset_iter_init(&it, other._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- self.add_triple(bt, True)
- cpdef intersection(self, SimpleGraph other):
- """
- Graph intersection.
- :param SimpleGraph other: The other graph to intersect.
- :rtype: SimpleGraph
- :return: A new SimpleGraph instance.
- """
- cdef:
- void *cur
- cc.HashSetIter it
- new_gr = self.empty_copy()
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- #print('Checking: <0x{:02x}> <0x{:02x}> <0x{:02x}>'.format(
- # <size_t>bt.s, <size_t>bt.p, <size_t>bt.o))
- if other.trp_contains(bt):
- #print('Adding.')
- new_gr.add_triple(bt, True)
- return new_gr
- cdef void ip_intersection(self, SimpleGraph other) except *:
- """
- In-place graph intersection.
- Triples not in common with another graph are removed from the current
- one.
- :param SimpleGraph other: The other graph to intersect.
- :rtype: void
- """
- cdef:
- void *cur
- cc.HashSetIter it
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- if not other.trp_contains(bt):
- self.remove_triple(bt)
- cpdef subtraction(self, SimpleGraph other):
- """
- Graph set-theoretical subtraction.
- Create a new graph with the triples of this graph minus the ones in
- common with the other graph.
- :param SimpleGraph other: The other graph to subtract to this.
- :rtype: SimpleGraph
- :return: A new SimpleGraph instance.
- """
- cdef:
- void *cur
- cc.HashSetIter it
- new_gr = self.empty_copy()
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- #print('Checking: <0x{:02x}> <0x{:02x}> <0x{:02x}>'.format(
- # <size_t>bt.s, <size_t>bt.p, <size_t>bt.o))
- if not other.trp_contains(bt):
- #print('Adding.')
- new_gr.add_triple(bt, True)
- return new_gr
- cdef void ip_subtraction(self, SimpleGraph other) except *:
- """
- In-place graph subtraction.
- Triples in common with another graph are removed from the current one.
- :param SimpleGraph other: The other graph to intersect.
- :rtype: void
- """
- cdef:
- void *cur
- cc.HashSetIter it
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- if other.trp_contains(bt):
- self.remove_triple(bt)
- cpdef xor(self, SimpleGraph other):
- """
- Graph Exclusive disjunction (XOR).
- :param SimpleGraph other: The other graph to perform XOR with.
- :rtype: SimpleGraph
- :return: A new SimpleGraph instance.
- """
- cdef:
- void *cur
- cc.HashSetIter it
- BufferTriple* bt
- new_gr = self.empty_copy()
- # Add triples in this and not in other.
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- if not other.trp_contains(bt):
- new_gr.add_triple(bt, True)
- # Other way around.
- cc.hashset_iter_init(&it, other._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- if not self.trp_contains(bt):
- new_gr.add_triple(bt, True)
- return new_gr
- cdef void ip_xor(self, SimpleGraph other) except *:
- """
- In-place graph XOR.
- Triples in common with another graph are removed from the current one,
- and triples not in common will be added from the other one.
- :param SimpleGraph other: The other graph to perform XOR with.
- :rtype: void
- """
- cdef:
- void *cur
- cc.HashSetIter it
- # TODO This could be more efficient to stash values in a simple
- # array, but how urgent is it to improve an in-place XOR?
- SimpleGraph tmp = SimpleGraph()
- # Add *to the tmp graph* triples in other graph and not in this graph.
- cc.hashset_iter_init(&it, other._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- if not self.trp_contains(bt):
- tmp.add_triple(bt)
- # Remove triples in common.
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- bt = <BufferTriple*>cur
- if other.trp_contains(bt):
- self.remove_triple(bt)
- self |= tmp
- cdef inline BufferTriple* store_triple(self, const BufferTriple* strp):
- """
- Store triple data in the graph.
- Normally, raw data underlying the triple and terms are only referenced
- by pointers. If the destination data are garbage collected before the
- graph is, segfaults are bound to happen.
- This method copies the data to the graph's memory pool, so they are
- managed with the lifecycle of the graph.
- Note that this method stores items regardless of whether thwy are
- duplicate or not, so there may be some duplication.
- """
- cdef:
- BufferTriple* dtrp = <BufferTriple*>self.pool.alloc(
- 1, sizeof(BufferTriple)
- )
- Buffer* spo = <Buffer*>self.pool.alloc(3, sizeof(Buffer))
- if not dtrp:
- raise MemoryError()
- if not spo:
- raise MemoryError()
- dtrp.s = spo
- dtrp.p = spo + 1
- dtrp.o = spo + 2
- spo[0].addr = self.pool.alloc(strp.s.sz, 1)
- spo[0].sz = strp.s.sz
- spo[1].addr = self.pool.alloc(strp.p.sz, 1)
- spo[1].sz = strp.p.sz
- spo[2].addr = self.pool.alloc(strp.o.sz, 1)
- spo[2].sz = strp.o.sz
- if not spo[0].addr or not spo[1].addr or not spo[2].addr:
- raise MemoryError()
- memcpy(dtrp.s.addr, strp.s.addr, strp.s.sz)
- memcpy(dtrp.p.addr, strp.p.addr, strp.p.sz)
- memcpy(dtrp.o.addr, strp.o.addr, strp.o.sz)
- return dtrp
- cdef inline void add_triple(
- self, const BufferTriple* trp, bint copy=False
- ) except *:
- """
- Add a triple from 3 (TPL) serialized terms.
- Each of the terms is added to the term set if not existing. The triple
- also is only added if not existing.
- :param BufferTriple* trp: The triple to add.
- :param bint copy: if ``True``, the triple and term data will be
- allocated and copied into the graph memory pool.
- """
- if copy:
- trp = self.store_triple(trp)
- #logger.info('Inserting terms.')
- cc.hashset_add(self._terms, trp.s)
- cc.hashset_add(self._terms, trp.p)
- cc.hashset_add(self._terms, trp.o)
- #logger.info('inserted terms.')
- #logger.info(f'Terms set size: {cc.hashset_size(self._terms)}')
- cdef size_t trp_sz = cc.hashset_size(self._triples)
- #logger.info(f'Triples set size before adding: {trp_sz}')
- r = cc.hashset_add(self._triples, trp)
- trp_sz = cc.hashset_size(self._triples)
- #logger.info(f'Triples set size after adding: {trp_sz}')
- cdef:
- cc.HashSetIter ti
- void *cur
- cdef int remove_triple(self, const BufferTriple* btrp) except -1:
- """
- Remove one triple from the graph.
- """
- return cc.hashset_remove(self._triples, btrp, NULL)
- cdef bint trp_contains(self, const BufferTriple* btrp):
- cdef:
- cc.HashSetIter it
- void* cur
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- if self.trp_cmp_fn(cur, btrp) == 0:
- return True
- return False
- cpdef void set(self, tuple trp) except *:
- """
- Set a single value for subject and predicate.
- Remove all triples matching ``s`` and ``p`` before adding ``s p o``.
- """
- if None in trp:
- raise ValueError(f'Invalid triple: {trp}')
- self.remove((trp[0], trp[1], None))
- self.add((trp,))
- def as_rdflib(self):
- """
- Return the data set as an RDFLib Graph.
- :rtype: rdflib.Graph
- """
- gr = Graph()
- for trp in self.data:
- gr.add(trp)
- return gr
- def _slice(self, s, p, o):
- """
- Return terms filtered by other terms.
- This behaves like the rdflib.Graph slicing policy.
- """
- _data = self.data
- #logger.debug(f'Slicing graph by: {s}, {p}, {o}.')
- if s is None and p is None and o is None:
- return _data
- elif s is None and p is None:
- return {(r[0], r[1]) for r in _data if r[2] == o}
- elif s is None and o is None:
- return {(r[0], r[2]) for r in _data if r[1] == p}
- elif p is None and o is None:
- return {(r[1], r[2]) for r in _data if r[0] == s}
- elif s is None:
- return {r[0] for r in _data if r[1] == p and r[2] == o}
- elif p is None:
- return {r[1] for r in _data if r[0] == s and r[2] == o}
- elif o is None:
- return {r[2] for r in _data if r[0] == s and r[1] == p}
- else:
- # all given
- return (s,p,o) in _data
- def lookup(self, pattern):
- """
- Look up triples by a pattern.
- This function converts RDFLib terms into the serialized format stored
- in the graph's internal structure and compares them bytewise.
- Any and all of the lookup terms msy be ``None``.
- :rtype: SimpleGraph
- "return: New SimpleGraph instance with matching triples.
- """
- cdef:
- void* cur
- BufferTriple trp
- SimpleGraph res_gr = SimpleGraph()
- self._match_ptn_callback(pattern, res_gr, cb.add_trp_callback, NULL)
- return res_gr
- cdef void _match_ptn_callback(
- self, pattern, SimpleGraph gr,
- lookup_callback_fn_t callback_fn, void* ctx=NULL
- ) except *:
- """
- Execute an arbitrary function on a list of triples matching a pattern.
- The arbitrary function is appied to each triple found in the current
- graph, and to a discrete graph that can be the current graph itself
- or a different one.
- """
- cdef:
- void* cur
- Buffer t1, t2
- Buffer ss, sp, so
- BufferTriple trp
- BufferTriple* trp_p
- lookup_fn_t cmp_fn
- cc.HashSetIter it
- s, p, o = pattern
- # Decide comparison logic outside the loop.
- if s is not None and p is not None and o is not None:
- #logger.info('Looping over one triple only.')
- # Shortcut for 3-term match.
- trp.s = &ss
- trp.p = &sp
- trp.o = &so
- term.serialize_from_rdflib(s, trp.s, self.pool)
- term.serialize_from_rdflib(p, trp.p, self.pool)
- term.serialize_from_rdflib(o, trp.o, self.pool)
- if cc.hashset_contains(self._triples, &trp):
- callback_fn(gr, &trp, ctx)
- return
- if s is not None:
- term.serialize_from_rdflib(s, &t1)
- if p is not None:
- cmp_fn = cb.lookup_sp_cmp_fn
- term.serialize_from_rdflib(p, &t2)
- elif o is not None:
- cmp_fn = cb.lookup_so_cmp_fn
- term.serialize_from_rdflib(o, &t2)
- else:
- cmp_fn = cb.lookup_s_cmp_fn
- elif p is not None:
- term.serialize_from_rdflib(p, &t1)
- if o is not None:
- cmp_fn = cb.lookup_po_cmp_fn
- term.serialize_from_rdflib(o, &t2)
- else:
- cmp_fn = cb.lookup_p_cmp_fn
- elif o is not None:
- cmp_fn = cb.lookup_o_cmp_fn
- term.serialize_from_rdflib(o, &t1)
- else:
- cmp_fn = cb.lookup_none_cmp_fn
- # Iterate over serialized triples.
- cc.hashset_iter_init(&it, self._triples)
- while cc.hashset_iter_next(&it, &cur) != cc.CC_ITER_END:
- trp_p = <BufferTriple*>cur
- if cmp_fn(trp_p, &t1, &t2):
- callback_fn(gr, trp_p, ctx)
- cdef class Imr(SimpleGraph):
- """
- In-memory resource data container.
- This is an extension of :py:class:`~SimpleGraph` that adds a subject URI to
- the data set and some convenience methods.
- An instance of this class can be converted to a ``rdflib.Resource``
- instance.
- Some set operations that produce a new object (``-``, ``|``, ``&``, ``^``)
- will create a new ``Imr`` instance with the same subject URI.
- """
- def __init__(self, uri, *args, **kwargs):
- """
- Initialize the graph with pre-existing data or by looking up a store.
- Either ``data``, or ``lookup`` *and* ``store``, can be provide.
- ``lookup`` and ``store`` have precedence. If none of them is specified,
- an empty graph is initialized.
- :param rdflib.URIRef uri: The graph URI.
- This will serve as the subject for some queries.
- :param args: Positional arguments inherited from
- ``SimpleGraph.__init__``.
- :param kwargs: Keyword arguments inherited from
- ``SimpleGraph.__init__``.
- """
- self.id = str(uri)
- #super().__init(*args, **kwargs)
- def __repr__(self):
- """
- String representation of an Imr.
- This includes the subject URI, number of triples contained and the
- memory address of the instance.
- """
- return (f'<{self.__class__.__name__} @{hex(id(self))} id={self.id}, '
- f'length={len(self)}>')
- def __getitem__(self, item):
- """
- Supports slicing notation.
- """
- if isinstance(item, slice):
- s, p, o = item.start, item.stop, item.step
- return self._slice(s, p, o)
- elif isinstance(item, Node):
- # If a Node is given, return all values for that predicate.
- return {
- r[2] for r in self.data
- if r[0] == self.id and r[1] == item}
- else:
- raise TypeError(f'Wrong slice format: {item}.')
- @property
- def uri(self):
- """
- Get resource identifier as a RDFLib URIRef.
- :rtype: rdflib.URIRef.
- """
- return URIRef(self.id)
- cdef Imr empty_copy(self):
- """
- Create an empty instance carrying over some key properties.
- """
- return self.__class__(uri=self.id)
- def value(self, p, strict=False):
- """
- Get an individual value.
- :param rdflib.termNode p: Predicate to search for.
- :param bool strict: If set to ``True`` the method raises an error if
- more than one value is found. If ``False`` (the default) only
- the first found result is returned.
- :rtype: rdflib.term.Node
- """
- # TODO use slice.
- values = {trp[2] for trp in self.lookup((self.uri, p, None))}
- #logger.info(f'Values found: {values}')
- if strict and len(values) > 1:
- raise RuntimeError('More than one value found for {}, {}.'.format(
- self.id, p))
- for ret in values:
- return ret
- return None
- cpdef as_rdflib(self):
- """
- Return the IMR as a RDFLib Resource.
- :rtype: rdflib.Resource
- """
- gr = Graph()
- for trp in self.data:
- gr.add(trp)
- return gr.resource(identifier=self.uri)
|